Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity.

نویسندگان

  • Jian-Fang Wu
  • En-Yi Chen
  • Yao Yu
  • Lin Liu
  • Yue Wu
  • Wei Kong Pang
  • Vanessa K Peterson
  • Xin Guo
چکیده

Owing to their high conductivity, crystalline Li7-3xGaxLa3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7-3xGaxLa3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivity of Li7-3xGaxLa3Zr2O12. When the Ga concentration exceeds 0.20 Ga per formula unit, the garnet-type material is found to assume a cubic structure, but lower Ga concentrations result in the coexistence of cubic and tetragonal phases. Most lithium within Li7-3xGaxLa3Zr2O12 is found to reside at the octahedral 96h site, away from the central octahedral 48g site, while the remaining lithium resides at the tetrahedral 24d site. Such kind of lithium distribution leads to high lithium-ion mobility, which is the origin of the high conductivity; the highest lithium-ion conductivity of 1.46 mS/cm at 25 °C is found to be achieved for Li7-3xGaxLa3Zr2O12 at x = 0.25. Additionally, there are two lithium-ion migration pathways in the Li7-3xGaxLa3Zr2O12 garnets: 96h-96h and 24d-96h-24d, but the lithium ions transporting through the 96h-96h pathway determine the overall conductivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of the lithium ion conductivity of Ta-doped Li7La3Zr2O12 by incorporation of calcium.

Fast ion conducting garnet materials have been identified as promising electrolytes for all solid-state batteries. However, reliable synthetic routes to materials with fully elucidated cation site occupancies where an enhancement in lithium conductivity is observed remains a challenge. Ca-Incorporation is developed here as a promising approach to enhance the ionic conductivity of garnet-type Li...

متن کامل

Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction

Here, we investigate the doping effects on the lithium ion transport behavior in garnet Li7La3Zr2O12 (LLZO) from the combined experimental and theoretical approach. The concentration of Li ion vacancy generated by the inclusion of aliovalent dopants such as Al(3+) plays a key role in stabilizing the cubic LLZO. However, it is found that the site preference of Al in 24d position hinders the thre...

متن کامل

Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12.

Garnet-type cubic Li7La3Zr2O12 exhibits one of the highest lithium-ion conductivity values amongst oxides (up to ∼2 mS cm-1 at room temperature). This compound has also emerged as a promising candidate for solid electrolytes in all-solid-state lithium batteries, due to its high ionic conductivity, good chemical stability against lithium metal, and wide electrochemical stability window. Defect c...

متن کامل

Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte.

Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd3Ga5O12 (GGG) substrate orientation, LLZO(001)/GGG(001) and LLZO(111)/GGG(111). The ionic conductivities in the grains of the (001) a...

متن کامل

Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets

The application of Li7La3Zr2O12 as a Li + solid electrolyte is hampered by the lack of a reliable procedure to obtain and densify the fast-ion conducting cubic garnet polymorph. Dense cubic Li7La3Zr2O12-type phases are typically formed as a result of Al-incorporation in an unreliable reaction with the alumina crucible at elevated temperatures of up to 1230 C. High Al-incorporation levels are al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2017